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By William C. Pitts and Jack N. Nielsen
SUMMARY

Ward's slender-body-theory formule for zero-lift drag contains three
integrals plus a base-drag term. Two of these integral terms depend only
upon the cross-sectlonal ares distribution of the body. The third inte-
gral term depends only upon the body shape and axial slopes at the base
of the body. This term is neglected in the transonic area rule because
in many cases it is zero; however, there are also many cases in which it
is not zero. This paper examines the term for the possibility of drag
reduction for a particular case. The model considered consists of a
body of revolution in combingtion with any wing that has an unswept trail-
ing edge and & constant trailing-edge angle along its span. It is found
that (neglecting any change in base drag) a drag reduction 1s obtainable
which, for the case consldered, is an edditional 12 percent of that
obtained with the area-rule modification., The probable effect of viscosity
on this theoretical result is discussed.

TNTRODUCTION

The transonic area rule (ref. 1) relates the drag of a configursation
and. the drag of an equivalent body of revolution having the same ares
distribution. Engineering methods have been developed from the area rule
for calculsting the drag of alrplanes gnd missiles at zero angle of attack.
The basis of the ares rule in slender-body theory can be investigated by
studying Ward's drag formula (ref. 2). It is Pound that the equivalent-
body concept holds rigorously only if certaln conditions at the base of
the body are met, and if the tralling edge of the wing is swept or cusped.
Frequently these conditions are violated, as pointed out in references 3
and 4, and sdditional drag is obtained above that of the equivalent body.
Berndt (ref. 3) states that two bodies have the same drag only if in sddi-
tion to being equivalent in the sense of the area rule they have the same
cross-sectlonal contour at the base and the same stresmwise slope around
that contour. In reference 3, Berndt investigates how the difference in
drag between equivalent bodies depends upon the difference in base shape.
The importent conclusion is that, within the limitetions of his approxi-
mate theory, the drag of a slender body having a finite cross-sectional
slope at the base may be considerably reduced by spreading out the base
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contour from & circle without changing the dlistribution of cross-sectional
area. ILighthill (ref. 4) has evaluated the drag increment over that of
the equivalent body of revolutlion for planasr and cruciform wings with
unswept trailing edges alone and in combination with cylindrical body.

It is clear from references 3 and 4 that the body shape given by the
transonic area rule does not give the minimum possible theoretical drag
for all configurations. An example is a wing-body combination for which
the wing trailing edge is uncusped and lies in the plane of the body base.
The purpose of the present paper is to determine (within the accuracy of
Ward's drag formula) how much the drag of this wing-body combination can
be reduced by modlfying the streamwlse slopes of the body at the base.
Since viscosity can have an important effect on the reality of the
inviscid-fluid-theory results presented herein, the probable effect of
viscosity 1s discussed.

SYMBOLS

a body redius at x =1
ao(x), } .
bo(x) parameters in P -
&2(X):

arameters in expansion
8.4(x) s o -} p cpm :cp
b wing gemigpan at x = 1
c wing root chord
CP pressure coefficlent -
D N drag
AD ' drag after adding shape modification minus drag before

adding shape modification

gzgzg: .'.}- parameters in @, expansion

gz&;: } parameters In ¢ expansion

gigig’ }- slope-amplitude function for shape modification
’ o e

1 length of wing-body combination
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m,n positive integers

q free-~stream dynamic pressure

B real part of complex funection

R(x) surface of basic body

R(x,0) surface of body with shape modification

B length of arc along contour

s(x) cross-sectional ares of model at x

v free-stream veloclity

X,Tr,0 cylindrical coordinates (see sketch (b))

X3 axlal distance from leading edge of wing root

X complex number in x = 1 plane

Z(x,y) upper wing surface

£ dummy variable of integration

® perturbation velocity potential

?—32 outwaxrd veloelty component normal to surface
Subscripts

A potential after adding shape modification

B basic body plus area-rule modification

c basic~model combination

i interference between wing and cylinder of radius

m shape modification

W wing

a
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Superscripts

' first derivatlve with respect to x

" second derivative with respect to x

PHYSICAL CONSIDERATIONS

The general statements of the Introduction can be given specific
meaning 1f the drag formuls of Werd is considered.

1 1
E'TEI S™(x)S"(E)dE ax + Sgiz) i log <1 - %) s"(g)at -

GlE <j€ ? .2;:13 ds>x___.z ) CPBaseS( D | (l)

The flrst two terms depend only on the distribution of cross-sectional
area glong the length of the wing-body combination. The third term

depends only on the shape of the wing-body cdmbination in the crossflow
plane of the trailing edge (contour C in sketch (a)) and the streamwise

Sketch (a)

slopes of the wing and body surfaces approaching the tralling edge. The
last term is the base drag which is not considered, although some of the
body shape changes considered might posslbly induce significant base-
pressure changes.,
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Since the first two terms of equation (1) depend only on the area
distribution, they represent the drag of the equivalent body. Freguently,
however, only the first term 1s used in engineering methods for calculat-
ing wave drag based on the equivalent body concept. It is, therefore,
important to know when all terms (other than base drag) but the first are
zero, Two cases can readily be found. The first case is that of a body
with a pointed base, or a wing with a cusped or-swept trailing edge.

Then 8S'(1) is zero and the contour C 1s zero. The second case occurs
when the body and/or wing is tangent to the cylindrical extension of the
contour C. In this case the second term is zero because 8'(1) = O and
the third texrm is zero because Jp/dn = 0. For other configurations,
the second and third terms ususlly contribute to the drag.

The purpose of this paper is to investlgate what drag savings are
theoretically possible through control of the third term. This 1s done
by modifying the streamwlse slopes of the body on contour C without
changing the body cross-sectional area. The streamwise slopes forward
of x = 1 can be chosen arbitrarily to fair into those at x = 1 with-
out affecting the drag. The first two terms of equation (1) are umaffected.

ANATYSTS

Velocity Potentials

The basic model and coordinste system used In the analysis are shown
in sketch (b). Only the shape and slopes of the model in the x = 1

+y

<
< 1

T
b _
\
—~ @
r= R(x) YQT
z=Z(x,y)

Sketch (b)

plane need be specified. The model shape forward of x = 1 1s arbitrary
except that the model must be slender in the sense of Ward's theory. The
areg-rule modification is included in the basic model. To simplify the
analysis, the case in which the wing-trailing-edge angle is a finite
constant along the span is considered.

Area-rule modification
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The perturbation veloclty potential in the crossflow plane of the
basic model can be written in the form

P =R+ Pt P (2)
wvhere @y 1is the potential of the wing alone (including the portion
blanketed by the body), Pp is the potential of the body plus the area-
rule modification, and ¢ 1is the interference potential that cancele
wing-alone components of velocity through the body surface. To P there
is added a shape modification potentisl, @,. As previously discussed,
the purpose for the shape modification is to modify the streamwise slopes
of the body at x = ! in such a manner as to reduce the drag of the
ving-body combination. For a reason which is subsequently pointed out,
the restriction 1s placed on the shape modification that the body cross
section at x = 1 must be & circle, This is not a serlious restriction
because eny meridian slope distribution can be faired into a clrcular
base by properly shaping the body forward of the base. The potentlal, @,
can be added directly to P provided it does not violeate the boundary
condition of no flow through the wing and body surfaces.

The wing-alone velocity potential in the crossflow plane, x = 1, is
Q= ":YE Zt ()R [ (X+1) Log(X+b) - (X-b) 1og(X~b) ~2b] (3)

vhere X = rel® ig the complex variable in the crossflow plene. The
other potential components, @p, ¢;, and q,, are obtained from the gemeral
slender-body potential

o = ap(x)log r + bo(x)-+§; éﬁéé) cos mé (%)
m=1

This series converges for r greater than the body radius. This is the
exact slender-bvody theory potential only for body cross sections which

are circular. For this reason the restriction is put on the body shape

modification that the base of the body shall remain circular.

The parameters ao(x) and bo(x) are functions only of the model
cross-sectional ares distribution. The parameters ap(x) depend only

upon the streamwise slope distribution of the body. Therefore, the
potential of the body plus the area-rule modification is of the form

Py = ao(x)log r + bq(x) (5)

and the shape modification potential is of the form
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o =) ) oo g (6)
[

=

m=1

The parameters ap(x) are determined from the boundary condition

o
<—(p—m> = VR!'(x,0)
A /=g,

o0
map(x)
- —_am-l-l cos mf = VR!'(x,0)

M=l

This suggests a shape modification of the form

R!'(x,8) = Z &n(x) cos mo
m=1

where gm(x) is a slope amplitude function. To the order of accuracy of
Ward's formula (eq. (1)) this type modification meets the requirement of
no body cross-sectional area change, and 1f only even velues of m are
taken, it satisfles the boundary condition of no flow through the wing

- surface. Even values of m are also required for symmetrical flow aboutb
the (x-z) plane. Then,

- O aop (X
’ @ =z —Iz‘%g—l cos 2né (N
N=1 -
with
2n4 1
aon(x) = -V aZn Eom (%)

The normal velocities produced on contour C by the n =l and n =2
components of @, are shown qualitatively by the arrows in sketch (c).

- i :r~cos29 C ir~<:0s-’-’f9
n=| n=2

~

Sketch (c)
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The interference potentlal ¢ 1is obtained from Py by using the

boundary condition that there be no net flow through the body surface.
Mathematically this is written

<§’i - -<aiw (8)
o /r=p Or /yug

Expansion of equation (3) in a Fourier cosine series that converges for
r<band 0< B8 < j glves

0

Py = do(2) + Z don( 1) cos 2ne (9)
n=1
where

do(2)

BV 1 2 b ryoo,
San(l) = 3 [n(zn-l) p2h nE1 b] 21(1)

2bV r
=l {log Db = -1zt
» &b+3 ) (2)

Then @y is obtained from equations (4), (8), and (9) in the form

o0
fon(1)
9y = fo(1)log » + Z = cos 2n6 (10)
N=l
where
£o(1) = - -&;—V 7t (1)

£on(2) = aan+1v<azn—1 ) 21> 21 (1)

(en-Ljx \p=2~1 20+
Theoretical Drag Reduction Due to Body Shape Modifilication

As previously discussed, only the third term in equstion (1) enters
in the drag increment produced by adding a body shape modification with-
out altering the cross-sectional area distribution. If subscript C
refers to the potential of the combination before adding body modificae-

tions and subscript A refers to the potential after adding the modifi-
cations

. 1.|I'I:'
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&o_ L A gs 4+ L f 2 as 11

a - Vaf;%"an S+V20q)can (1)
where

Py =% * @
gThe cgntourac is shown én sketeh (a).) With the con%itions ghat
W _ 298 _ 30 0N _ g o __ 2%
vlialew = 0 and 5 VZ! (1) on the wing and —— = -S> the
body
s pT d uzr (1) PP
%D=-Ffo [cpm 2+ (qproproptay) cP“‘]acm- - j; T
(12)

Insertion of equations (5), (7), (9), and (10) and the orthogonality
property of the cosine function into equation (12) gives

v2

=1
l;z'(z) ZI agn(l)

Integration glves

%)- -2 i\/;ﬁ [d-an(l) +rial fon() +}%ﬁ azn(l)] [%ﬁ:\ cosZ2no 36 -

%E = a2 il:n(En-l) ( gn(2)2!(2) + X oy Sen (1)] (13)

We obtain the optimm values of gon(1l) by considering each term of the

series separately. The values of gon(1) that give the maximm AD/q
are

= - L e T
een(t) = - 2 (1 55w () (24)

The maximum drag reduction is then
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e [Z'(”T i HE=E %ZZ—i)T (15)

As expected, the optimum value of gon(1) and the drag reduction are zero
when the wing trailing edge is cusped.

Although the total drag increment depends only on conditions at the
model base, the drag increment does not origlnate there. Actually the
drag increment is distributed over the entire winged portion of the model
as 1llustrated by the following exemple:; Bince the distribution of the
amplitude function, gon(x), is arbitrary for x less than 1, choose

2
ge(x1) = M1 <§§> + N2 <§%

where x; = x-(1-c¢) and A, and Az are chosen so that go(1) satisfies
the condition of maximum drag reduction (eq. (lhg). The distribution of
drag increment due to the addition of this go(x) shape modification is
shown in sketch (&) for a biconvex-section rectangular wing.

AD(x)

Sketch (d)

i
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Influence of Boundary-Layer Shock-Wave Interaction
on Drag Reduction

The foregoing calculations are based on invisecid-flow theory which
ignores the interaction between the trailing-edge shock wave of the wing
(and body) and the boundary layer approaching the base. The questions
arise as to how this interaction affects -
the over-all drag and how 1t affects
the drag reductions due to the type of
modifications of the body shepes cal-
culated herein. In the theory the
streamlines at the trailing edge are
assumed. to be as shown at the top of
sketch (e). The streamlines are par-
allel to the sides of the traliling-
edge wedge and undergo a pressgure rise
in traversing the trailing-edge shock
wave. Because the pressure rise
occurs behind the wing, 1t does not
act to decresse the drag. If the
trailing edge were cusped, as shown at -
the middle of sketch (e), the pressure
rige would occur through a gradusl
compression in front of the wing
trailing edge and the drag due to the

tralling-edge angle would be . '
eliminated. Inviscid S (2)=0

Inviscid S'(2)#0

The influence of viscosity on the

drag 1s somevwhat similar to that of

cusping the trgliling edge. The bound- p—
.

ary layer allows the pressure rise
through the tralling shock waves to be
transmitted upstream. This thickens
the boundaery layer; compression begins
over the wing surface; and shocks move . .
up in front of the trailing edge. The Viscid S (2)#0
accompanying pressure inerease over

the rear of the wing acts to decrease Sketch (e)

the pressure drag below its vaglue on

the basgis of inviscid f£fluid theory. Such an effect has been shown by
pressure distributions (e.g,, ref. 5) for two-dimensional airfoils in
supersonic flow. The smount the pressure drag 1s reduced below the
inviscid value depends on the boundary-layer thickness approaching the
trailing edge, the shock-wave strength (Mach number), and whether the
boundary layer is laminar or turbulent. A phenomenon gimilar to theat
shown at the bottom of sketch (e) is also important in the wave-msking
resistance of hoat hulls. As pointed out by Havelock (ref. 6), the
wave-making regigtance is reduced by virtue of & thickening of the
"friction belt" near the stern.
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Since boundary-layer shock-wave Ilnteraction influences the flow at
the trailing edge and since the drag increment expression (eq. (15))
depends only on conditlons at the trailing edge, it is pertinent to ask
1f the drag reductions computed herein on the basis of inviscid fluid
theory are realistic., Although AD/q 1s a function only of tralling-
edge condltions, the drag reduction is distributed over the entire winged
portion of the configuration as shown by the exemple in gketch (d). For
thie exsmple the total drag increment up to x;/c¢c = 0.65 (shaded region)
1s zero, so that the net drag reduction gilven by the present lnviscid
fluid theory is distributed in the region 0.65 < (x1/c) < 1. Since
boundary-layer shock-wave interaction effects will Influence this drag
distribution only near the tralling edge, it appears that most of the
drag reduction predicted by the inviscid theory can be realized; the
actual amount can only be determined by experiment.

CONCLUDING REMARKS

Equation (15) gives the maximum drag reduction obtained (in inviscid
theory) by modifylng the stresmwise slopes of the body without changing
the cross-sectional area. This expression is independent of the wing
plan form since 1t depends only upon conditions at the base. However,
the drag reduction is distributed over the winged portion of the wing-
body combination to the extent that the streamwise slopes of the body are
modified. This drag distribution does depend upon wing plan form.

To give an idea of the order of masgnitude of the drag reduction
glven by equation (15), a comparison is made with the drag reduction
glven by the area-rule modification. For a delta-wing cylindrical-body
combination (sketech (a)) with b/a = 3, the additional drag reduction
(neglecting any change in base drag) glven by the go(1) shape modifica-
tion 1s 12 percent of the drag given by the first term in equation (1)
(the area-rule term). This percentage varles somewhat with different
configurations, but it should remain the same order of magnitude. The
effect of the other gon(l) modifications is negligible compared to
the go(1) modification.

Ames Aeronautical Laboratory
National Advisory Committee for Aeronasutics
Moffett Field, Calif., Mar. 21, 1958
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